/***************************************************************************
Postfix -> Infix
The following algorithm works for the expressions whose infix form does
not require parenthesis to override conventional precedence of operators.
1) Create the Expression Tree from the postfix expression
2) Run in-order traversal on the tree.
Postfix -> Prefix
1) Create the Expression Tree from the postfix expression
2) Run pre-order traversal on the tree.
----------------------------------------------------------------------------------------------
ALGORITHM FOR CREATING EXPRESSION TREE FROM POSTFIX EXPRESSION
----------------------------------------------------------------------------------------------
1) Examine the next element in the input.
2) If it is operand then
i) create a leaf node i.e. node having no child
ii) copy the operand in data part
iii) PUSH node's address on stack
3) If it is an operator, then
i) create a node
ii) copy the operator in data part
iii) POP address of node from stack and assign it to node->right_child
iv) POP address of node from stack and assign it to node->left_child
v) PUSH node's address on stack
5) If there is more input go to step 2
6) If there is no more input, POP the address from stack,
which is the address of the ROOT node of Expression Tree.
----------------------------------------------------------------------------------------
Evaluating an expression involves two phases:
1) Create an expression tree for given expression
2) Evaluate the tree recursively
---------------------------------------------------------------------------------------
ALGORITHM TO EVALUATE THE EXPRESSION FROM EXPRESSION TREE
---------------------------------------------------------------------------------------
1)if root != NULL
2)if current node contains an operator
a) x = Evaluate Tree(root -> left_child)
b) y = Evaluate Tree(root -> right_child)
c) perform operation on x and y, specified by the operator
and store result in a variable
d) Return variable
3)else, Return root->data
----------------------------------------------------------------------------------------
****************************************************************************/
/***************************************************************************
APPLICATION : Conversion from Postfix to Infix and Prefix (using Expression Tree)
and Evaluation of Expression Tree
CODED BY : Ankit Pokhrel
COMPILED ON : Borland C++ Ver 5.02
DATE : 2010 - August - 04
***************************************************************************/
#include "iostream.h"
#include "conio.h"
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
struct TREE //Structure to represent a tree
{
char data;
struct TREE *right,*left,*root;
};
typedef TREE tree;
/********* Stack Using Linked List **********/
struct Stack //Structure to represent Stack
{
struct TREE *data;
struct Stack *next,*head,*top; //Pointers to next node,head and top
};
typedef struct Stack node;
node *Nw; //Global Variable to represent node
void initialize(node *&n)
{
n = new node;
n -> next = n -> head = n -> top = NULL;
}
void create(node *n)
{
Nw = new node; //Create a new node
Nw -> next = NULL; //Initialize next pointer field
if(n -> head == NULL) //if first node
{
n -> head = Nw; //Initialize head
n -> top = Nw; //Update top
}
}
void push(node *n,tree *ITEM)
{
node *temp = n -> head;
if(n -> head == NULL) //if First Item is Pushed to Stack
{
create(n); //Create a Node
n -> head -> data = ITEM; //Insert Item to head of List
n -> head = Nw;
return; //Exit from Function
}
create(n); //Create a new Node
Nw -> data = ITEM; //Insert Item
while(temp -> next != NULL)
temp = temp -> next; //Go to Last Node
temp -> next = Nw; //Point New node
n -> top = Nw; //Update top
}
node* pop(node *n)
{
node *temp = n -> head,*deleted;
if(n -> top == NULL) //If the Stack is Empty
{
return NULL;
}
if(n -> top == n -> head) //If only one Item
{
deleted = n -> head;
n -> head = n -> top = NULL; //Set head and top to Null
return deleted; //Return deleted node
}
while(temp -> next != n -> top)
temp = temp -> next; //move pointer temp to second last node
temp -> next = NULL; //Second last node points to NULL
deleted = n -> top; //Save topmost node
n -> top = temp; //Update top
return deleted; //Return deleted node
}
int Empty(node *nd) //function to check if the stack is empty or not
{
if(nd -> top == NULL)
return 1; //empty
else
return 0;
}
/*********** Tree Section ************/
tree *New;
void create() //Function to create a node of a tree
{
New = new tree;
New -> left = NULL;
New -> right = NULL;
}
void insert(tree *&t,char Item,int pass) //Function to insert item on a tree
{
if(t == NULL) //If tree doesn't exist
{
t = new tree; //make a node
t -> data = Item; //insert item
t -> left = NULL; //initialize left pointer
t -> right = NULL; //initialize right pointer
if(pass)
t -> root = t; //initialize root
return; //return from function
}
create();
New -> data = Item;
}
void preorder(tree *t) //Function to print tree in preorder
{
if(t != NULL)
{
cout << t -> data << ' ';
preorder(t -> left);
preorder(t -> right);
}
}
void inorder(tree *t) //Function to print tree in inorder
{
if(t != NULL)
{
inorder(t -> left);
cout << t -> data << ' ';
inorder(t -> right);
}
}
/*************** Main Program Section *************/
int isOperator(char ch)
{
if(ch == '+' || ch == '-' || ch == '*' || ch == '/' || ch == '$')
return 1;
else
return 0;
}
bool check(node *nd)
{
if(nd != NULL)
return true;
else
return false;
}
float calculate(float opr1,float opr2,char oprator)
{
float value;
if(oprator == '+')
value = opr1 + opr2;
if(oprator == '-')
value = opr1 - opr2;
if(oprator == '*')
value = opr1 * opr2;
if(oprator == '/')
if(opr2 != 0)
value = opr1 / opr2;
if(oprator == '$')
value = pow(opr1,opr2);
return value;
}
float evaluate(tree *t)
{
float x,y,result;
char ch[3];
if(t != NULL)
{
if(isOperator(t -> data))
{
x = evaluate(t -> left); //go to left
y = evaluate(t -> right); //go to right
result = calculate(x,y,t -> data); //calculate
return result;
}
else
{
ch[0] = t -> data;
ch[1] = '\0';
result = atof(ch); //convert to float
return result;
}
}
}
int main()
{
char postfix[60];
cout << "Enter a valid Postfix Expression\n";
cout << "(in a single line, without spaces)\n";
int i = 0;
while(postfix[i - 1] != '\n')
postfix[i++] = getchar();
int len = i - 1,pass = true,valid = true;
node *stk,*nd; //create a stack
initialize(stk);
tree *tr = NULL,*value;
i = 0;
while(i < len) //while there is data
{
if(!isOperator(postfix[i])) //if operand
{
create();
New -> data = postfix[i];
push(stk,New); //push address of tree node to stack
}
else //if operator
{
insert(tr,postfix[i],pass); //create a node of tree and insert operator
if(pass) //if first pass
{
nd = pop(stk);
valid = check(nd);
if(!valid)
break;
value = nd -> data; //pop address
tr -> right = value; //assign to left child
nd = pop(stk);
valid = check(nd);
if(!valid)
break;
value = nd -> data; //pop address
tr -> left = value; //assign to right child
pass = false; //reset pass
push(stk,tr); //push address to stack
}
else
{
nd = pop(stk);
valid = check(nd);
if(!valid)
break;
value = nd -> data; //pop address
New -> right = value; //assign to left child
nd = pop(stk);
valid = check(nd);
if(!valid)
break;
value = nd -> data; //pop stack
New -> left = value; //assign to right child
push(stk,New); //push address to stack
}
}
i++; //update i
}
if(!Empty(stk))
{
tr -> root = pop(stk) -> data; //Last data of stack is root of tree
tr = tr -> root;
}
if(!Empty(stk)) //if stack is not empty
valid = false;
if(!valid)
{
cout << "\nThe Given Postfix Expression is not Valid";
cout << "\nCheck above Expression and try again...";
getch();
return 0; //exit from program
}
cout << "\nInfix : ";
inorder(tr); //Inorder traversal gives Infix of expression
cout << "\n\nPrefix : ";
preorder(tr); //Postorder traversal gives Postfix of expression
float result = evaluate(tr);
cout << endl << "\nSolution : " << result;
getch();
return 0;
}
/****************************************************************************
------------
LIMITATIONS
------------
1)Above Alogorithm Works only for the expressions whose infix form does
not require parenthesis to override conventional precedence of operators.
2)This Program doesn't work for Operand greater than 9.
3)Above Algorithm Works only for Binary Operators.
4)This Program Works only for operators +,-,*,/ and $(Power).
****************************************************************************/
......................
Labels:
Tree
No comments:
Post a Comment